BREAKTHROUG TECHNOLOGIES

BREAK THROUGH TECHNOLOGIES

These technologies all have staying power. They will affect the economy and our politics, improve medicine, or influence our culture. Some are unfolding now; others will take a decade or more to develop. But you should know about all of them right now.

  • Reversing Paralysis

Scientists are making remarkable progress at using brain implants to restore the freedom of movement that spinal cord injuries take away.

Availability: 10 to 15 years

The French neuroscientist was watching a macaque monkey as it hunched aggressively at one end of a treadmill. His team had used a blade to slice halfway through the animal’s spinal cord, paralyzing its right leg. Now Courtine wanted to prove he could get the monkey walking again. To do it, he and colleagues had installed a recording device beneath its skull, touching its motor cortex, and sutured a pad of flexible electrodes around the animal’s spinal cord, below the injury. A wireless connection joined the two electronic devices.

The result: a system that read the monkey’s intention to move and then transmitted it immediately in the form of bursts of electrical stimulation to its spine. Soon enough, the monkey’s right leg began to move. Extend and flex. Extend and flex. It hobbled forward. “The monkey was thinking, and then boom, it was walking,” recalls an exultant Courtine, a professor with Switzerland’s École Polytechnique Fédérale de Lausanne.

  • Self-Driving Trucks

Tractor-trailers without a human at the wheel will soon barrel onto highways near you. What will this mean for the nation’s 1.7 million truck drivers?

Availability: 5 to 10 years

Roman Mugriyev was driving his long-haul 18-wheeler down a two-lane Texas highway when he saw an oncoming car drift into his lane just a few hundred feet ahead. There was a ditch to his right and more oncoming cars to his left, so there was little for him to do but hit his horn and brake. “I could hear the man who taught me to drive telling me what he always said was rule number one: ‘Don’t hurt anybody,’” Mugriyev recalls.

But it wasn’t going to work out that way. The errant car collided with the front of Mugriyev’s truck. It shattered his front axle, and he struggled to keep his truck and the wrecked car now fused to it from hitting anyone else as it barreled down the road. After Mugriyev finally came to a stop, he learned that the woman driving the car had been killed in the collision.

Could a computer have done better at the wheel? Or would it have done worse?

  • Paying with Your Face

Face-detecting systems in China now authorize payments, provide access to facilities, and track down criminals. Will other countries follow?

Availability: Now

Shortly after walking through the door at Face++, a Chinese startup valued at roughly a billion dollars, I see my face, unshaven and looking a bit jet-lagged, flash up on a large screen near the entrance.

Having been added to a database, my face now provides automatic access to the building. It can also be used to monitor my movements through each room inside. As I tour the offices of Face++ (pronounced “face plus plus”), located in a suburb of Beijing, I see it appear on several more screens, automatically captured from countless angles by the company’s software. On one screen a video shows the software tracking 83 different points on my face simultaneously. It’s a little creepy, but undeniably impressive.

Over the past few years, computers have become incredibly good at recognizing faces, and the technology is expanding quickly in China in the interest of both surveillance and convenience. Face recognition might transform everything from policing to the way people interact every day with banks, stores, and transportation services.

  • Practical Quantum Computers

Advances at Google, Intel, and several research groups indicate that computers with previously unimaginable power are finally within reach.

Availability: 4-5 years

One of the labs at QuTech, a Dutch research institute, is responsible for some of the world’s most advanced work on quantum computing, but it looks like an HVAC testing facility. Tucked away in a quiet corner of the applied sciences building at Delft University of Technology, the space is devoid of people. Buzzing with resonant waves as if occupied by a swarm of electric katydids, it is cluttered by tangles of insulated tubes, wires, and control hardware erupting from big blue cylinders on three and four legs

Inside the blue cylinders—essentially supercharged refrigerators—spooky quantum-mechanical things are happening where nanowires, semiconductors, and superconductors meet at just a hair above absolute zero. It’s here, down at the limits of physics, that solid materials give rise to so-called quasiparticles, whose unusual behavior gives them the potential to serve as the key components of quantum computers. And this lab in particular has taken big steps toward finally bringing those computers to fruition. In a few years they could rewrite encryption, materials science, pharmaceutical research, and artificial intelligence.

Every year quantum computing comes up as a candidate for this Breakthrough Technologies list, and every year we reach the same conclusion: not yet. Indeed, for years qubits and quantum computers existed mainly on paper, or in fragile experiments to determine their feasibility. (The Canadian company D-Wave Systems has been selling machines it calls quantum computers for a while, using a specialized technology called quantum annealing. The approach, skeptics say, is at best applicable to a very constrained set of computations and might offer no speed advantage over classical systems.) This year, however, a raft of previously theoretical designs are actually being built. Also new this year is the increased availability of corporate funding—from Google, IBM, Intel, and Microsoft, among others—for both research and the development of assorted technologies needed to actually build a working machine: microelectronics, complex circuits, and control software.

The project at Delft, led by Leo Kouwenhoven, a professor who was recently hired by Microsoft, aims to overcome one of the most long-standing obstacles to building quantum computers: the fact that qubits, the basic units of quantum information, are extremely susceptible to noise and therefore error. For qubits to be useful, they must achieve both quantum superposition (a property something like being in two physical states simultaneously) and entanglement (a phenomenon where pairs of qubits are linked so that what happens to one can instantly affect the other, even when they’re physically separated). These delicate conditions are easily upset by the slightest disturbance, like vibrations or fluctuating electric fields.

  • The 360-Degree Selfie

Inexpensive cameras that make spherical images are opening a new era in photography and changing the way people share stories.

Availability: Now

Seasonal changes to vegetation fascinate Koen Hufkens. So last fall Hufkens, an ecological researcher at Harvard, devised a system to continuously broadcast images from a Massachusetts forest to a website called VirtualForest.io. And because he used a camera that creates 360°pictures, visitors can do more than just watch the feed; they can use their mouse cursor (on a computer) or finger (on a smartphone or tablet) to pan around the image in a circle or scroll up to view the forest canopy and down to see the ground. If they look at the image through a virtual-reality headset they can rotate the photo by moving their head, intensifying the illusion that they are in the woods

Hufkens says the project will allow him to document how climate change is affecting leaf development in New England. The total cost? About $550, including $350 for the Ricoh Theta S camera that takes the photos.

We experience the world in 360 degrees, surrounded by sights and sounds. Until recently, there were two main options for shooting photos and video that captured that context: use a rig to position multiple cameras at different angles with overlapping fields of view or pay at least $10,000 for a special camera. The production process was just as cumbersome and generally took multiple days to complete. Once you shot your footage, you had to transfer the images to a computer; wrestle with complex, pricey software to fuse them into a seamless picture; and then convert the file into a format that other people could view easily.

  • Hot Solar Cells

By converting heat to focused beams of light, a new solar device could create cheap and continuous power.

Availability: 10 to 15 years

 

Solar panels cover a growing number of rooftops, but even decades after they were first developed, the slabs of silicon remain bulky, expensive, and inefficient. Fundamental limitations prevent these conventional photovoltaics from absorbing more than a fraction of the energy in sunlight.

But a team of MIT scientists has built a different sort of solar energy device that uses inventive engineering and advances in materials science to capture far more of the sun’s energy. The trick is to first turn sunlight into heat and then convert it back into light, but now focused within the spectrum that solar cells can use. While various researchers have been working for years on so-called solar thermophotovoltaics, the MIT device is the first one to absorb more energy than its photovoltaic cell alone, demonstrating that the approach could dramatically increase efficiency.

Standard silicon solar cells mainly capture the visual light from violet to red. That and other factors mean that they can never turn more than around 32 percent of the energy in sunlight into electricity. The MIT device is still a crude prototype, operating at just 6.8 percent efficiency—but with various enhancements it could be roughly twice as efficient as conventional photovoltaics.

Hot Solar Cells

BreakthroughA solar power device that could theoretically double the efficiency of conventional solar cells.

Why It MattersThe new design could lead to inexpensive solar power that keeps working after the sun sets.

Key Players– David Bierman, Marin Soljacic, and Evelyn Wang, MIT
– Vladimir Shalaev, Purdue University
– Andrej Lenert, University of Michigan
– Ivan Celanovic, MIT

Availability10 to 15 years

The key step in creating the device was the development of something called an absorber-emitter. It essentially acts as a light funnel above the solar cells. The absorbing layer is built from solid black carbon nanotubes that capture all the energy in sunlight and convert most of it into heat. As temperatures reach around 1,000 °C, the adjacent emitting layer radiates that energy back out as light, now mostly narrowed to bands that the photovoltaic cells can absorb. The emitter is made from a photonic crystal, a structure that can be designed at the nanoscale to control which wavelengths of light flow through it. Another critical advance was the addition of a highly specialized optical filter that transmits the tailored light while reflecting nearly all the unusable photons back. This “photon recycling” produces more heat, which generates more of the light that the solar cell can absorb, improving the efficiency of the system.

HOPE IT HELPS YOU A LOT TO GAIN MORE KNOWLEDGE ……….. TECH FUN 😉